

Feb 19-8:47 AM

Given $b>0, h>0$, use Riemann Sum to find the area below $f(x)=\frac{b}{h} x$, above x-axis from $x=0$ to $x=h . \quad f(0)=\frac{b}{n}(0)=0$ $\left\{\begin{array}{l}(h, b) \\ b\end{array} \quad \begin{array}{l}\text { = } \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x\end{array}\right.$ $\vec{h} \rightarrow \Delta x=\frac{h-0}{n}=\frac{h}{n} \checkmark$
$x_{i}=0+i \cdot \Delta x=i \cdot \frac{h}{n}=\frac{i h}{n} \checkmark$

$$
f\left(x_{i}\right)=\frac{b}{h}\left(\frac{i k}{n}\right)=\frac{b i}{n} \checkmark \quad f\left(x_{i}\right) \cdot \Delta x=\frac{b i}{n} \cdot \frac{h}{n}=\frac{b h i}{n^{2}}
$$

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x=\sum_{i=1}^{n} \frac{b h i}{n^{2}}=\frac{b h}{n^{2}} \cdot \sum_{i=1}^{n} i
$$

$$
\begin{aligned}
i=1 & =\frac{b h}{n^{2}} \cdot \frac{n(n+1)}{2}=\frac{b h}{2} \cdot \frac{n^{2}+n}{n^{2}}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x=\lim _{n \rightarrow \infty} \frac{b h}{2} \cdot \frac{n^{2}+\cdots}{n^{2}}=\frac{b h}{2} \cdot \lim _{n \rightarrow \infty} \frac{n^{2}+\cdots}{n^{2}}
$$

$$
\begin{aligned}
n \rightarrow \infty & =\frac{b h}{2} \cdot 1=\frac{b h}{2} \sqrt{n}>n_{n}
\end{aligned}
$$

$$
A=\int_{0}^{h} \frac{b}{h} x d x=\left.\frac{b}{h} \cdot \frac{x^{2}}{2}\right|_{0} ^{h}=\frac{b}{2 h}\left[h^{2}-0^{2}\right]^{h}=\frac{b h^{2}}{2 h}=\left[\frac{b h}{2}\right]
$$

$$
\begin{aligned}
& \text { Sind the area enclosed by } f(x)=8-x^{2} \text { and } \\
& g(x)=f(x) \\
& x^{2}=8-x^{2}
\end{aligned} \quad \begin{aligned}
& 2 x^{2}=8 \quad x^{2}=4
\end{aligned}
$$

\qquad L
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nov 29-10:39 AM

$$
\begin{aligned}
& \text { find the area enclosed by } f(x)=x+6 \text { and } g(x)=x^{2} \text {. } \\
& g(x)=f(x) \\
& \begin{array}{l}
x^{2}=x+6 \\
x^{2}-x-6=0 \\
(x-3)(x+2)=0 \\
x=3 \quad x=-2
\end{array} \\
& \begin{array}{l}
x^{2}=x+6 \\
x^{2}-x-6=0 \\
(x-3)(x+2)=0 \\
x=3 \quad x=-2
\end{array} \\
& A=\int_{-2}^{3}\left[x+6-x^{2}\right] d x \\
& \begin{array}{l}
=\int_{-2}\left[x+6-x^{2}\right] d x \\
\left.=\left.\left[\frac{x^{2}}{2}+6 x-\frac{x^{3}}{3}\right]\right|_{-2} ^{3}=\left[\left(\frac{3^{2}}{2}+6(3)-\frac{3^{3}}{3}\right)-\left(\frac{(-2)}{2}+6(6) 2-\frac{6}{3}\right)\right] \right\rvert\,
\end{array} \\
& =\frac{9}{2}+18-9-2+12-\frac{8}{3} \\
& =\frac{9}{2}+19-\frac{8}{3} \\
& =\frac{125}{6} \\
& \underset{\Delta}{2}
\end{aligned}
$$

\qquad
\square

Nov 29-10:55 AM

$$
\begin{aligned}
& \text { Evaluate } \int_{0}^{2} x \sqrt{4-x^{2}} d x \\
& \text { use subs. method } \rightarrow u=4-x^{2} \quad x=0 \rightarrow u=4 \\
& \begin{aligned}
& \int_{4}^{0} \sqrt{u} \frac{d u}{-2} \quad \begin{array}{l}
d u=-2 x d x \quad \\
\frac{d u}{-2}=x d x
\end{array} \\
&=\frac{-1}{2} \int_{4}^{0} u^{1 / 2} d u=\left.\frac{-1}{2} \cdot \frac{u^{3 / 2}}{3 / 2}\right|_{4} ^{0} \\
&=\left.\frac{-1}{3} \cdot u \sqrt{u}\right|_{4} ^{0}=\frac{-1}{3}[0 \sqrt{0}-4 \sqrt{4}]
\end{aligned} \\
& =\frac{-1}{3}[0-8]=\frac{8}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Evaluate } \int_{\pi / 12}^{\pi / 9} \sec ^{2} 3 x d x \quad \begin{array}{l}
\text { Hint: Use } u=3 x \\
\text { dor Subs. method. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3}\left[\tan \frac{\pi}{3}-\tan \frac{\pi}{4}\right] \\
& =\frac{1}{3}[\sqrt{3}-1]=\frac{\sqrt{3}-1}{3}
\end{aligned}
$$

Nov 29-11:10 AM

$$
\begin{aligned}
& \text { Evaluate } \int_{0}^{\pi / 2} \sin ^{2} 3 x \cdot \cos 3 x d x \quad \begin{array}{l}
x=0 \rightarrow u=0 \\
x=\frac{\pi}{2} \rightarrow u=\frac{3 \pi}{2}
\end{array} \\
& \begin{array}{l}
u=3 x \\
d u=3 d x
\end{array} \quad=\int_{0}^{3 \pi / 2} \sin ^{2} u \cdot \cos u \cdot \frac{d u}{3} \\
& \frac{d u}{3}=d x \quad
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Evaluate $\int_{-1}^{1} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{-1} ^{1}=\frac{1}{4}\left[1^{4}-(-1)^{4}\right]$

$$
=\frac{1}{4}[1-1]=0
$$

Find the area enclosed by $f(x)=x^{3} \dot{\varepsilon} x$-axis
from $x=-1 \quad t_{0}, x=1 . \quad A=\int_{-1}^{1} x^{3} d x$
 $\int_{-1}^{0}\left[0-x^{3}\right] d x$
$A=2 \int_{0}^{1} x^{3} d x=\left.2 \cdot \frac{x^{4}}{4}\right|_{0} ^{1}=\frac{1}{2}$

